\(\int \cot (c+b x) \sin (a+b x) \, dx\) [233]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 29 \[ \int \cot (c+b x) \sin (a+b x) \, dx=-\frac {\text {arctanh}(\cos (c+b x)) \sin (a-c)}{b}+\frac {\sin (a+b x)}{b} \]

[Out]

-arctanh(cos(b*x+c))*sin(a-c)/b+sin(b*x+a)/b

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {4674, 2717, 3855} \[ \int \cot (c+b x) \sin (a+b x) \, dx=\frac {\sin (a+b x)}{b}-\frac {\sin (a-c) \text {arctanh}(\cos (b x+c))}{b} \]

[In]

Int[Cot[c + b*x]*Sin[a + b*x],x]

[Out]

-((ArcTanh[Cos[c + b*x]]*Sin[a - c])/b) + Sin[a + b*x]/b

Rule 2717

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 4674

Int[Cot[w_]^(n_.)*Sin[v_], x_Symbol] :> Int[Cos[v]*Cot[w]^(n - 1), x] + Dist[Sin[v - w], Int[Csc[w]*Cot[w]^(n
- 1), x], x] /; GtQ[n, 0] && FreeQ[v - w, x] && NeQ[w, v]

Rubi steps \begin{align*} \text {integral}& = \sin (a-c) \int \csc (c+b x) \, dx+\int \cos (a+b x) \, dx \\ & = -\frac {\text {arctanh}(\cos (c+b x)) \sin (a-c)}{b}+\frac {\sin (a+b x)}{b} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 93, normalized size of antiderivative = 3.21 \[ \int \cot (c+b x) \sin (a+b x) \, dx=\frac {\cos (b x) \sin (a)}{b}-\frac {2 i \arctan \left (\frac {(\cos (c)-i \sin (c)) \left (\cos (c) \cos \left (\frac {b x}{2}\right )-\sin (c) \sin \left (\frac {b x}{2}\right )\right )}{i \cos (c) \cos \left (\frac {b x}{2}\right )+\cos \left (\frac {b x}{2}\right ) \sin (c)}\right ) \sin (a-c)}{b}+\frac {\cos (a) \sin (b x)}{b} \]

[In]

Integrate[Cot[c + b*x]*Sin[a + b*x],x]

[Out]

(Cos[b*x]*Sin[a])/b - ((2*I)*ArcTan[((Cos[c] - I*Sin[c])*(Cos[c]*Cos[(b*x)/2] - Sin[c]*Sin[(b*x)/2]))/(I*Cos[c
]*Cos[(b*x)/2] + Cos[(b*x)/2]*Sin[c])]*Sin[a - c])/b + (Cos[a]*Sin[b*x])/b

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.22 (sec) , antiderivative size = 95, normalized size of antiderivative = 3.28

method result size
risch \(-\frac {i {\mathrm e}^{i \left (x b +a \right )}}{2 b}+\frac {i {\mathrm e}^{-i \left (x b +a \right )}}{2 b}+\frac {\ln \left ({\mathrm e}^{i \left (x b +a \right )}-{\mathrm e}^{i \left (a -c \right )}\right ) \sin \left (a -c \right )}{b}-\frac {\ln \left ({\mathrm e}^{i \left (x b +a \right )}+{\mathrm e}^{i \left (a -c \right )}\right ) \sin \left (a -c \right )}{b}\) \(95\)

[In]

int(cot(b*x+c)*sin(b*x+a),x,method=_RETURNVERBOSE)

[Out]

-1/2*I*exp(I*(b*x+a))/b+1/2*I/b*exp(-I*(b*x+a))+ln(exp(I*(b*x+a))-exp(I*(a-c)))/b*sin(a-c)-ln(exp(I*(b*x+a))+e
xp(I*(a-c)))/b*sin(a-c)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 197 vs. \(2 (29) = 58\).

Time = 0.26 (sec) , antiderivative size = 197, normalized size of antiderivative = 6.79 \[ \int \cot (c+b x) \sin (a+b x) \, dx=\frac {\frac {\sqrt {2} \log \left (\frac {2 \, \cos \left (b x + a\right )^{2} \cos \left (-2 \, a + 2 \, c\right ) - 2 \, \cos \left (b x + a\right ) \sin \left (b x + a\right ) \sin \left (-2 \, a + 2 \, c\right ) + \frac {2 \, \sqrt {2} {\left ({\left (\cos \left (-2 \, a + 2 \, c\right ) + 1\right )} \cos \left (b x + a\right ) - \sin \left (b x + a\right ) \sin \left (-2 \, a + 2 \, c\right )\right )}}{\sqrt {\cos \left (-2 \, a + 2 \, c\right ) + 1}} - \cos \left (-2 \, a + 2 \, c\right ) + 3}{2 \, \cos \left (b x + a\right )^{2} \cos \left (-2 \, a + 2 \, c\right ) - 2 \, \cos \left (b x + a\right ) \sin \left (b x + a\right ) \sin \left (-2 \, a + 2 \, c\right ) - \cos \left (-2 \, a + 2 \, c\right ) - 1}\right ) \sin \left (-2 \, a + 2 \, c\right )}{\sqrt {\cos \left (-2 \, a + 2 \, c\right ) + 1}} + 4 \, \sin \left (b x + a\right )}{4 \, b} \]

[In]

integrate(cot(b*x+c)*sin(b*x+a),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*log((2*cos(b*x + a)^2*cos(-2*a + 2*c) - 2*cos(b*x + a)*sin(b*x + a)*sin(-2*a + 2*c) + 2*sqrt(2)*(
(cos(-2*a + 2*c) + 1)*cos(b*x + a) - sin(b*x + a)*sin(-2*a + 2*c))/sqrt(cos(-2*a + 2*c) + 1) - cos(-2*a + 2*c)
 + 3)/(2*cos(b*x + a)^2*cos(-2*a + 2*c) - 2*cos(b*x + a)*sin(b*x + a)*sin(-2*a + 2*c) - cos(-2*a + 2*c) - 1))*
sin(-2*a + 2*c)/sqrt(cos(-2*a + 2*c) + 1) + 4*sin(b*x + a))/b

Sympy [F]

\[ \int \cot (c+b x) \sin (a+b x) \, dx=\int \sin {\left (a + b x \right )} \cot {\left (b x + c \right )}\, dx \]

[In]

integrate(cot(b*x+c)*sin(b*x+a),x)

[Out]

Integral(sin(a + b*x)*cot(b*x + c), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 105 vs. \(2 (29) = 58\).

Time = 0.26 (sec) , antiderivative size = 105, normalized size of antiderivative = 3.62 \[ \int \cot (c+b x) \sin (a+b x) \, dx=\frac {\log \left (\cos \left (b x\right )^{2} + 2 \, \cos \left (b x\right ) \cos \left (c\right ) + \cos \left (c\right )^{2} + \sin \left (b x\right )^{2} - 2 \, \sin \left (b x\right ) \sin \left (c\right ) + \sin \left (c\right )^{2}\right ) \sin \left (-a + c\right ) - \log \left (\cos \left (b x\right )^{2} - 2 \, \cos \left (b x\right ) \cos \left (c\right ) + \cos \left (c\right )^{2} + \sin \left (b x\right )^{2} + 2 \, \sin \left (b x\right ) \sin \left (c\right ) + \sin \left (c\right )^{2}\right ) \sin \left (-a + c\right ) + 2 \, \sin \left (b x + a\right )}{2 \, b} \]

[In]

integrate(cot(b*x+c)*sin(b*x+a),x, algorithm="maxima")

[Out]

1/2*(log(cos(b*x)^2 + 2*cos(b*x)*cos(c) + cos(c)^2 + sin(b*x)^2 - 2*sin(b*x)*sin(c) + sin(c)^2)*sin(-a + c) -
log(cos(b*x)^2 - 2*cos(b*x)*cos(c) + cos(c)^2 + sin(b*x)^2 + 2*sin(b*x)*sin(c) + sin(c)^2)*sin(-a + c) + 2*sin
(b*x + a))/b

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 226 vs. \(2 (29) = 58\).

Time = 0.30 (sec) , antiderivative size = 226, normalized size of antiderivative = 7.79 \[ \int \cot (c+b x) \sin (a+b x) \, dx=-\frac {2 \, {\left (\frac {{\left (\tan \left (\frac {1}{2} \, a\right )^{2} \tan \left (\frac {1}{2} \, c\right )^{2} - \tan \left (\frac {1}{2} \, a\right ) \tan \left (\frac {1}{2} \, c\right )^{3} + \tan \left (\frac {1}{2} \, a\right ) \tan \left (\frac {1}{2} \, c\right ) - \tan \left (\frac {1}{2} \, c\right )^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, b x\right ) \tan \left (\frac {1}{2} \, c\right ) - 1 \right |}\right )}{\tan \left (\frac {1}{2} \, a\right )^{2} \tan \left (\frac {1}{2} \, c\right )^{3} + \tan \left (\frac {1}{2} \, a\right )^{2} \tan \left (\frac {1}{2} \, c\right ) + \tan \left (\frac {1}{2} \, c\right )^{3} + \tan \left (\frac {1}{2} \, c\right )} - \frac {{\left (\tan \left (\frac {1}{2} \, a\right )^{2} \tan \left (\frac {1}{2} \, c\right ) - \tan \left (\frac {1}{2} \, a\right ) \tan \left (\frac {1}{2} \, c\right )^{2} + \tan \left (\frac {1}{2} \, a\right ) - \tan \left (\frac {1}{2} \, c\right )\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, b x\right ) + \tan \left (\frac {1}{2} \, c\right ) \right |}\right )}{\tan \left (\frac {1}{2} \, a\right )^{2} \tan \left (\frac {1}{2} \, c\right )^{2} + \tan \left (\frac {1}{2} \, a\right )^{2} + \tan \left (\frac {1}{2} \, c\right )^{2} + 1} + \frac {\tan \left (\frac {1}{2} \, b x\right ) \tan \left (\frac {1}{2} \, a\right )^{2} - \tan \left (\frac {1}{2} \, b x\right ) - 2 \, \tan \left (\frac {1}{2} \, a\right )}{{\left (\tan \left (\frac {1}{2} \, b x\right )^{2} + 1\right )} {\left (\tan \left (\frac {1}{2} \, a\right )^{2} + 1\right )}}\right )}}{b} \]

[In]

integrate(cot(b*x+c)*sin(b*x+a),x, algorithm="giac")

[Out]

-2*((tan(1/2*a)^2*tan(1/2*c)^2 - tan(1/2*a)*tan(1/2*c)^3 + tan(1/2*a)*tan(1/2*c) - tan(1/2*c)^2)*log(abs(tan(1
/2*b*x)*tan(1/2*c) - 1))/(tan(1/2*a)^2*tan(1/2*c)^3 + tan(1/2*a)^2*tan(1/2*c) + tan(1/2*c)^3 + tan(1/2*c)) - (
tan(1/2*a)^2*tan(1/2*c) - tan(1/2*a)*tan(1/2*c)^2 + tan(1/2*a) - tan(1/2*c))*log(abs(tan(1/2*b*x) + tan(1/2*c)
))/(tan(1/2*a)^2*tan(1/2*c)^2 + tan(1/2*a)^2 + tan(1/2*c)^2 + 1) + (tan(1/2*b*x)*tan(1/2*a)^2 - tan(1/2*b*x) -
 2*tan(1/2*a))/((tan(1/2*b*x)^2 + 1)*(tan(1/2*a)^2 + 1)))/b

Mupad [B] (verification not implemented)

Time = 25.24 (sec) , antiderivative size = 233, normalized size of antiderivative = 8.03 \[ \int \cot (c+b x) \sin (a+b x) \, dx=\frac {{\mathrm {e}}^{-a\,1{}\mathrm {i}-b\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2\,b}-\frac {{\mathrm {e}}^{a\,1{}\mathrm {i}+b\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2\,b}-\frac {\ln \left (-{\mathrm {e}}^{a\,1{}\mathrm {i}}\,{\mathrm {e}}^{b\,x\,1{}\mathrm {i}}\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}}\,{\mathrm {e}}^{-c\,2{}\mathrm {i}}-1\right )-\frac {{\mathrm {e}}^{a\,2{}\mathrm {i}}\,{\mathrm {e}}^{-c\,2{}\mathrm {i}}\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}}\,{\mathrm {e}}^{-c\,2{}\mathrm {i}}-1\right )\,1{}\mathrm {i}}{\sqrt {-{\mathrm {e}}^{a\,2{}\mathrm {i}}\,{\mathrm {e}}^{-c\,2{}\mathrm {i}}}}\right )\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}-c\,2{}\mathrm {i}}-1\right )}{2\,b\,\sqrt {-{\mathrm {e}}^{a\,2{}\mathrm {i}-c\,2{}\mathrm {i}}}}+\frac {\ln \left (-{\mathrm {e}}^{a\,1{}\mathrm {i}}\,{\mathrm {e}}^{b\,x\,1{}\mathrm {i}}\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}}\,{\mathrm {e}}^{-c\,2{}\mathrm {i}}-1\right )+\frac {{\mathrm {e}}^{a\,2{}\mathrm {i}}\,{\mathrm {e}}^{-c\,2{}\mathrm {i}}\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}}\,{\mathrm {e}}^{-c\,2{}\mathrm {i}}-1\right )\,1{}\mathrm {i}}{\sqrt {-{\mathrm {e}}^{a\,2{}\mathrm {i}}\,{\mathrm {e}}^{-c\,2{}\mathrm {i}}}}\right )\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}-c\,2{}\mathrm {i}}-1\right )}{2\,b\,\sqrt {-{\mathrm {e}}^{a\,2{}\mathrm {i}-c\,2{}\mathrm {i}}}} \]

[In]

int(cot(c + b*x)*sin(a + b*x),x)

[Out]

(exp(- a*1i - b*x*1i)*1i)/(2*b) - (exp(a*1i + b*x*1i)*1i)/(2*b) - (log(- exp(a*1i)*exp(b*x*1i)*(exp(a*2i)*exp(
-c*2i) - 1) - (exp(a*2i)*exp(-c*2i)*(exp(a*2i)*exp(-c*2i) - 1)*1i)/(-exp(a*2i)*exp(-c*2i))^(1/2))*(exp(a*2i -
c*2i) - 1))/(2*b*(-exp(a*2i - c*2i))^(1/2)) + (log((exp(a*2i)*exp(-c*2i)*(exp(a*2i)*exp(-c*2i) - 1)*1i)/(-exp(
a*2i)*exp(-c*2i))^(1/2) - exp(a*1i)*exp(b*x*1i)*(exp(a*2i)*exp(-c*2i) - 1))*(exp(a*2i - c*2i) - 1))/(2*b*(-exp
(a*2i - c*2i))^(1/2))